Principle of Moments

The turning effect on the bolt by the spanner is called a "moment".

The moment $=$ the size of the force (N) multiplied by the length of the lever (m).

Moment = Force x Distance

Moments are measured in Nm

therefore: moment $(\mathbf{N m})=$ force $(\mathbf{N}) \times$ distance (m)
An object is in equilibrium, i.e. it is balanced and not turning or moving when:

- there is no force applied to the object, or
- the sum of the clockwise moments about a point is equal to the sum of the anticlockwise moments about the point.

A load on one end of a see-saw will create a turning effect about the fulcrum called a moment. A load is an example of a force.

$$
\text { Moment }=\text { Load } X \text { Distance (distance from the pivot/fulcrum to the load) }
$$

The diagram above illustrates loads of 200 N placed equal distances from the fulcrum.

Moment = Force \mathbf{X} Distance

The anticlockwise moment $=200 \mathrm{~N} \times 2 \mathrm{~m}=400 \mathrm{Nm}$
The clockwise moment $=200 \mathrm{~N} \times 2 \mathrm{~m}=400 \mathrm{Nm}$.
The loads are in equilibrium because:

- the loads are equal
- the loads are placed equal distances from the fulcrum
- the anticlockwise moment equals the clockwise moment.

The diagram above illustrates two unequal loads placed on the seesaw.
The anticlockwise moment $=200 \mathrm{NX} 2 \mathrm{~m}=400 \mathrm{Nm}$
The clockwise moment $=400 \mathrm{NX} \mathrm{1m}=400 \mathrm{Nm}$

As the anticlockwise moment and the clockwise moment are equal, the see-saw is in equilibrium, i.e. it is balanced.

In the example above, two 50 N loads are placed on one side of the seesaw and a 150 N load is placed on the other. The see-saw is balanced because the clockwise moment is equal to the sum of the anticlockwise moments, i.e.

Moment $=$ Force \times Distance
Moment at $\mathrm{A}=50 \mathrm{~N} \times 2 \mathrm{~m}=100 \mathrm{Nm}$ anticlockwise moment
Moment at $B=50 \mathrm{~N} \times 1 \mathrm{~m}=50 \mathrm{Nm}$ anticlockwise moment
Anticlockwise moment at $A+B=150 \mathrm{Nm}$

Moment at $C=150 \mathrm{~N} \times 1 \mathrm{~m}=150 \mathrm{Nm}$ clockwise moment

Bending Moment

Moments acting on a Class 1 lever

There is a 500 Nm anticlockwise moment and a 500 Nm clockwise moment, so the lever is in equilibrium. In order to lift the 500 N load higher, the effort must be increased or the distance from the effort force to the fulcrum must be increased.

Moments acting on a Class 2 lever

There is a 600 N load acting on the lever 1 metre from the fulcrum so the anticlockwise moment is 600 Nm . There is a 195 N effort acting on the lever 3 metres from the fulcrum so the clockwise moment is 585 Nm . In order to lift the load, an effort greater than 600 Nm must be applied or the distance from the effort force to the fulcrum must be increased.

Moments acting on a Class 3 lever

There is a 600 N load acting on the lever 3 metres from the fulcrum so the anticlockwise moment is 1800 Nm . There is a 1795 N effort acting on the lever 1 metre from the fulcrum so the clockwise moment is 1795 Nm . In order to lift the load, an effort greater than 1800Nm must be applied or the distance from the effort force to the fulcrum must be increased.

