## Gear Calculations

1. Two spur gears are illustrated opposite.

- Draw an arrow above the driven gear to show the direction of its rotation.
- The driver gear is rotating at a velocity of 600 revolutions per minute (RPM). What is the velocity of the driven gear?

Answer: $\qquad$

2. A simple gear train is illustrated opposite.

- Draw arrows above the idler and driven gear to show the direction of each gear's rotation.
- The driver gear is rotating at a velocity of 600 revolutions per minute (RPM). What is the velocity of the driven gear?

Answer: $\qquad$

3. Two spur gears are illustrated opposite.

- Draw an arrow above the driven gear to show the direction of its rotation.
- The driver gear is rotating at a velocity of 600 revolutions per minute (RPM). What is the velocity of the driven gear?

Answer: $\qquad$

4. A simple gear train is illustrated opposite.

- Draw arrows above the idler and driven gear to show the direction of each gear's rotation.
- The driver gear is rotating at a velocity of 300 revolutions per minute (RPM). What is the velocity of the driven gear?
$\qquad$


5. A simple gear train is illustrated opposite.

- Draw arrows above the idler and driven gear to show the direction of each gear's rotation.
- The driver gear is rotating at a velocity of 1200 revolutions per minute (RPM). What is the velocity of the driven gear?


Answer $\qquad$
Driver gear 28 teeth 1200 RPM
6. A compound gear train is illustrated opposite.

- The driver gear is rotating at a velocity of 1200 revolutions per minute (RPM). What is the velocity of the driven gear?

Answer: $\qquad$

- What is the gear ratio of the compound gear train?

Answer: $\qquad$

7. A compound gear train is illustrated opposite.

- The driver gear is rotating at a velocity of 1200 revolutions per minute (RPM). What is the velocity of the driven gear?

Answer: $\qquad$

- What is the gear ratio of the compound gear train?


Answer: $\qquad$

Name:
Form:

